Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Med Mushrooms ; 24(2): 23-30, 2022.
Article in English | MEDLINE | ID: covidwho-1690631

ABSTRACT

The antiviral properties of water extracts from pharmaceutical raw materials of the chaga mushroom, Inonotus obliquus, were studied against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). All studies with infectious materials were carried out in an isolated virological laboratory of the State Research Center of Virology and Biotechnology Vector of Rospotrebnadzor, which has a sanitary and epidemiological conclusion for the right to work with pathogenic biological agents of I-II pathogenicity groups. Antiviral activity was determined by the ability of I. obliquus water extracts to inhibit the replication of SARS-CoV-2 (nCoV/Victoria /1/2020 strain) in Vero E6 and Vero cell cultures. The results of these studies showed that water extracts of I. obliquus are characterized by low toxicity in Vero and Vero E6 cell cultures and have antiviral activity against SARS-CoV-2. The 50% inhibitory concentration ranged from 0.75 to 11.6 µg/mL. A patent for the invention was received (Patent RU, 2741714 C 1, 2021).


Subject(s)
Agaricales , Basidiomycota , COVID-19 Drug Treatment , Animals , Antiviral Agents/pharmacology , Cell Culture Techniques , Chlorocebus aethiops , Inonotus , SARS-CoV-2 , Vero Cells , Water
2.
Int J Med Mushrooms ; 23(2): 1-11, 2021.
Article in English | MEDLINE | ID: covidwho-1105918

ABSTRACT

This review provides results obtained by scientists from different countries on the antiviral activity of medicinal mushrooms against influenza viruses that can cause pandemics. Currently, the search for antiviral compounds is relevant in connection with the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Medicinal mushrooms contain biologically active compounds (polysaccharides, proteins, terpenes, melanins, etc.) that exhibit an antiviral effect. The authors present the work carried out at the State Research Center of Virology and Biotechnology Vector in Russia, whose mission is to protect the population from biological threats. The research center possesses a collection of numerous pathogenic viruses, which allowed screening of water extracts, polysaccharides, and melanins from fruit bodies and fungal cultures. The results of investigations on different subtypes of influenza virus are presented, and special attention is paid to Inonotus obliquus (chaga mushroom). Compounds produced from this mushroom are characterized by the widest range of antiviral activity. Comparative data are presented on the antiviral activity of melanin from natural I. obliquus and submerged biomass of an effective strain isolated in culture against the pandemic strain of influenza virus A/California/07/09 (H1N1 pdm09).


Subject(s)
Agaricales/chemistry , Antiviral Agents/pharmacology , Biological Factors/pharmacology , Orthomyxoviridae/drug effects , Animals , Antiviral Agents/isolation & purification , Biological Factors/isolation & purification , Humans , Inonotus/chemistry , Melanins/isolation & purification , Melanins/pharmacology , Orthomyxoviridae/classification , Pandemics , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology
SELECTION OF CITATIONS
SEARCH DETAIL